Abstract

In this paper, an analytical approach for the availability evaluation of cellular manufacturing systems is presented, where a manufacturing system is considered operational as long as its production capacity requirements are satisfied. The advantage of the approach is that constructing a system level Markov chain (a complex task) is not required. A manufacturing system is decomposed into two subsystems, i.e. machining system and material handling system. The machining subsystem is in turn decomposed into machine cells. For each machine cell and material handling subsystem, a Markovian model is derived and solved to find the probability of a subset of working machines in each cell, and a subset of the operating material handling carriers that satisfies the manufacturing capacity requirements. The overall manufacturing system availability is obtained using a procedure presented in the paper. The novelty of the approach is that it incorporates imperfect coverage and imperfect repair factors in the Markovian models. The approach is used to evaluate transient and steady-state performance of three alternative designs based on an industrial example. Detailed discussion of the results and the impact of imperfect coverage and imperfect repair on the availability of the manufacturing system is presented. Possible extensions of the work and software tools available for model analysis are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call