Abstract

AbstractA longstanding puzzle is that the escape of magnetospheric energetic particles (greater than tens of keV) across Earth's magnetopause into the magnetosheath is common irrespective of conditions thought to engender magnetic reconnection and boundary normal magnetic fields. Multiple causes for escape have been invoked, including interactions with strong gradients, wave scattering, boundary dynamics, and boundary normal fields. Here we tackle only part of the problem by developing a relatively simple kinetic model including critical features not utilized in previous models. We find that particles can often completely escape without invoking waves or unmodeled magnetosheath structures for both northwardly and southwardly magnetosheath fields. Because multiple means of escape are found to be available, the particles are hard to completely contain, consistent with observations. The model also predicts specific pitch angle evolution signatures that uniquely identify boundary normal field‐enabled escape, now reported in a companion paper as observed by the Magnetospheric Multiscale (MMS) mission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call