Abstract

AbstractWe model the magnetized interaction between a star and a close-in planet (SPMIs), using global, magnetohydrodynamic numerical simulations. In this proceedings, we study the effects of the numerical boundary conditions at the stellar surface, where the stellar wind is driven, and in the planetary interior. We show that is it possible to design boundary conditions that are adequate to obtain physically realistic, steady-state solutions for cases with both magnetized and unmagnetized planets. This encourages further development of numerical studies, in order to better constrain and undersand SPMIs, as well as their effects on the star-planet rotational evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call