Abstract
This work is concerned with the modeling of lubricated revolute clearance joints in multibody mechanical systems. The existence of the clearance at revolute joints is inevitable in all mechanical systems, and most of them are designed to operate with a lubricant fluid. It is known that the use of lubricant at revolute joints is demonstrated to be an effective way to ensuring better performance of the mechanical systems. The long journal-bearing theory for dynamic loads is used to evaluate the resulting hydrodynamic forces of the pressure distribution in the lubricated revolute joints. These hydrodynamic forces are included into the governing equations of motion of the system. A numerical example is presented in order to demonstrate the efficiency and accuracy of the methodology and procedures adopted. The results are close to those obtained with ideal joints even when simulated in a high-speed mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.