Abstract

SummaryPrevious lost-circulation models assume either a stationary fracture or a constant-pressure- or constant-flowrate-driven fracture, but they cannot capture fluid loss into a growing, induced-fracture driven by dynamic circulation pressure during drilling. In this paper, a new numerical model is developed on the basis of the finite-element method for simulating this problem. The model couples dynamic mud circulation in the wellbore and induced-fracture propagation into the formation. It provides estimates of time-dependent wellbore pressure, fluid-loss rate, and fracture profile during drilling. Numerical examples were carried out to investigate the effects of several operational parameters on lost circulation. The results show that the viscous pressure losses in the wellbore annulus caused by dynamic circulation can lead to significant increases in wellbore pressure and fluid loss. The information provided by the model (e.g., dynamic circulation pressure, fracture width, and fluid-loss rate) is valuable for managing wellbore pressure and designing wellbore-strengthening operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.