Abstract
Understanding temporal dependencies of videos is fundamental for vision problems, but deep learning–based models are still insufficient in this field. In this article, we propose a novel deep multiplicative neural network (DMNN) for learning hierarchical long-term representations from video. The DMNN is built upon the multiplicative block that remembers the pairwise transformations between consecutive frames using multiplicative interactions rather than the regular weighted-sum ones. The block is slided over the timesteps to update the memory of the networks on the frame pairs. Deep architecture can be implemented by stacking multiple layers of the sliding blocks. The multiplicative interactions lead to exact, rather than approximate, modeling of temporal dependencies. The memory mechanism can remember the temporal dependencies for an arbitrary length of time. The multiple layers output multiple-level representations that reflect the multi-timescale structure of video. Moreover, to address the difficulty of training DMNNs, we derive a theoretically sound convergent method, which leads to a fast and stable convergence. We demonstrate a new state-of-the-art classification performance with proposed networks on the UCF101 dataset and the effectiveness of capturing complicate temporal dependencies on a variety of synthetic datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Multimedia Computing, Communications, and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.