Abstract

Expanding photovoltaic (PV) resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape, aligning with the “carbon peaking and carbon neutrality” objectives. However, rural power grids often lack digitalization; thus, the load distribution within these areas is not fully known. This hinders the calculation of the available PV capacity and deduction of node voltages. This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas. First, houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model. The distribution of the houses is then used to estimate the load distribution in the grid area. Next, equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines. Finally, by calculating the connectivity matrix of the nodes, a minimum spanning tree is extracted, the topology of the network is constructed, and the node parameters of the load-distribution model are calculated. The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas. The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters, thereby offering vital support for determining PV access capability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.