Abstract

Rhodopsin-mediated electrical events in green algae have been recorded in the past from the eyes of numerous micro-algae like Haematococcus pluvialis, Chlamydomonas reinhardtii and Volvox carteri. However, the electrical data gathered by suction-pipette techniques could be interpreted in qualitative terms only. Here we present two models that allow a quantitative analysis of such results: First, an electrical analog circuit for the cell in suction pipette configuration is established. Applying this model to experimental data from unilluminated cells of C. reinhardtii yields a membrane conductance of about 3 Sm(-2). Furthermore, an analog circuit allows the determination of the photocurrent fraction that is recorded under experimental conditions. Second, a reaction scheme of a rhodopsin-type photocycle with an early Ca(2+) conductance and a later H(+) conductance is presented. The combination of both models provides good fits to light-induced currents recorded from C. reinhardtii. Finally, it allowed the calculation of the impact of each model parameter on the time courses of observable photocurrent and of inferred transmembrane voltage. The reduction of the flash-to-peak times at increasing light intensities are explained by superposition of two kinetically distinct rhodopsins and by assuming that the Ca(2+)-conducting state decays faster at more positive membrane voltages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call