Abstract

Reducing power dissipation is one of the most important issues in VLSI design today. Scaling causes subthreshold leakage currents to become a large component of total power dissipation. Multi-Threshold CMOS (MTCMOS) technology has emerged as a promising technique to reduce leakage power. This paper first introduces how to model the sleep transistor sizing problem in the MTCMOS circuits as a Bin-Packing Problem (BPP). The gate-clustering BPP and the First-Fit (FF) techniques are also introduced to further improve the solution quality. To take the circuit’s routing complexity into consideration which is critical for Deep Sub-Micron (technologies that are 0.25 μm and below) (DSM) implementations, a Set-Partitioning Problem (SPP) is then formed. However, this highly constrained model limits it’s application for large circuit design. A Set-Covering (SCP) model is therefore investigated to efficiently solve the problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.