Abstract
This study undertakes a comparative analysis of the performance of machine learning and traditional survival analysis techniques in the insurance industry. The techniques compared are the traditional Cox Proportional Hazards (CPH), Random Survival Forests (RSF) and Conditional Inference Forests (CIF) machine learning models. These techniques are applied in a case study of insurance portfolio of one of Ecuador's largest insurer. This study demonstrates how machine learning techniques perform better in predicting survival function measured by the C-index and Brier Score. It also demonstrates that the predictive contribution of covariates in the RSF model is consistent with the traditional CPH model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.