Abstract

Abstract. Future changes in land use and cover have important implications for agriculture, energy, water use, and climate. Estimates of future land use and land cover differ significantly across economic models as a result of differences in drivers, model structure, and model parameters; however, these models often rely on heuristics to determine model parameters. In this study, we demonstrate a more systematic and empirically based approach to estimating a few key parameters for an economic model of land use and land cover change, gcamland. Specifically, we generate a large set of model parameter perturbations for the selected parameters and run gcamland simulations with these parameter sets over the historical period in the United States to quantify land use and land cover, determine how well the model reproduces observations, and identify parameter combinations that best replicate observations, assuming other model parameters are fixed. We also test alternate methods for forming expectations about uncertain crop yields and prices, including adaptive, perfect, linear, and hybrid approaches. In particular, we estimate parameters for six parameters used in the formation of expectations and three of seven logit exponents for the USA only. We find that an adaptive expectation approach minimizes the error between simulated outputs and observations, with parameters that suggest that for most crops, landowners put a significant weight on previous information. Interestingly, for corn, where ethanol policies have led to a rapid growth in demand, the resulting parameters show that a larger weight is placed on more recent information. We examine the change in model parameters as the metric of model error changes, finding that the measure of model fitness affects the choice of parameter sets. Finally, we discuss how the methodology and results used in this study could be used for other regions or economic models to improve projections of future land use and land cover change.

Highlights

  • Between 1961 and 2015, global agricultural production has increased substantially, including more than a tripling of wheat production, a 5-fold increase in maize production, and a 12-fold increase in soybean production (FAO, 2020b)

  • This section describes the results from the default gcamland ensemble

  • This ensemble assumes an initial model year of 1990, an annual time step, subsidies are excluded, and the parameter sets are chosen to minimize the average Normalized root mean square error (NRMSE) across all crops

Read more

Summary

Introduction

Between 1961 and 2015, global agricultural production has increased substantially, including more than a tripling of wheat production, a 5-fold increase in maize production, and a 12-fold increase in soybean production (FAO, 2020b). Total global cropland area has increased by 15 % between 1960 and 2015, from 1377 million hectares (Mha) to 1591 Mha (Klein Goldewijk et al, 2017). These changes have resulted in changes in natural land area, including declines in global forest area (Hurtt et al, 2020). There has been a shift in crop distribution, with an increasing share of corn and soybeans and a decreasing share of wheat and other grains (Fig. 1; FAO, 2020a; Taheripour and Tyner, 2013)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call