Abstract

In this paper we present a mesoscopic model of the transport and electrochemical processes inside a Lithium-O2 battery cathode pore. The model dynamically resolves both Oxygen Reduction Reaction (ORR) thin film and solution phase mechanisms together with the transport of O2, Li+ and LiO2 in the electrolyte. It is supported on an extension to three dimensions of our Kinetic Monte Carlo (KMC) Electrochemical Variable Step Size Method (E-VSSM) recently published by our group in [M. A. Quiroga and A. A. Franco, J. Electrochem. Soc., 162, E73 (2015)]. The model allows predicting porosity evolution as a function of multiple operational, physical and geometrical parameters including the pore size and inlet/outlet channel size, O2 and Li+ concentration, the property of the solvent as well as the applied overpotential. The investigation of the impact of these different aspects reveals that at the mesoscale level, the overall ORR kinetics and the discharge mechanism strongly depend on a balance between the geometrical features of the pore and the transport as well as the electrochemical properties of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.