Abstract
Abstract A mass transfer model in consideration of multi-layer resistances through NaA zeolite membrane and lumen pressure drop in the permeate side was developed to describe pervaporation dehydration through scaled-up hollow fiber supported NaA zeolite membrane. It was found that the transfer resistance in the lumen of the permeate side is strongly related with geometric size of hollow fiber zeolite membrane, which could not be neglected. The effect of geometric size on pervaporation dehydration could be more significant under higher vacuum pressure in the permeate side. The transfer resistance in the lumen increases with the hollow fiber length but decreases with lumen diameter. The geometric structure could be optimized in terms of the ratio of lumen diameter to membrane length. A critical value of dI/L (Rc) to achieve high permeation flux was empirically correlated with extraction pressure in the permeate side. Typically, for a hollow fiber supported NaA zeolite membrane with length of 0.40 m, the lumen diameter should be larger than 2.0 mm under the extraction pressure of 1500 Pa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.