Abstract
Intrinsic point defects in LiNbO3, i.e., isolated Nb antisites and Li as well Nb vacancies, are investigated from first-principles within the Slater-Janak transition state model. Thereby the electronic structure of the investigated defects is calculated with hybrid exchange-correlation functionals. This approach allows for the calculation of charge transition levels without comparing the total energies of differently charged supercells. The obtained results are in agreement with previous hybrid density-functional theory calculations based on total-energy differences. Li and Nb vacancies can be formed in the V(-)(Li) and V(5-)(Nb) charge states only, as long as the host is not strongly p-type or n-type, respectively. NbLi antisites may capture one or two electrons, forming the defect states often referred to as small bound polaron and bi-polaron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.