Abstract

A modified test-chain self-consistent field theory (SCFT) is presented to study the intra- and intermolecular correlations of linear and branched polymers in various solutions and melts. The key to the test-chain SCFT is to break the the translational symmetry by fixing a monomer at the origin of a coordinate. This theory successfully describes the crossover from self-avoiding walk at short distances to screened random walk at long distances in a semidilute solution or melt. The calculations indicated that branching enhances the swelling of polymers in melts and influences stretching at short distances. The test-chain SCFT calculations show good agreement with experiments and classic polymer theories. We highlight that the theory presented here provides a solution to interpret the polymer conformation and behavior under various conditions within the framework of one theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call