Abstract

We use second order Moller Plesset perturbation theory and several density functional theory methods to calculate the counterpoise corrected electronic interaction energies between benzene and a series of polyaromatic molecules. These systems serve as a simple model for DNA intercalation. We show that addition of nitrogen atoms to the polyaromatic molecules always increases sandwich-type interactions, and that, of the density functional theory methods studied, only SVWN can mimic the interaction energies and optimal separations obtained with perturbation theory. SVWN reproduces the optimal molecular distances obtained with perturbation theory very well, and often comes within less than 10% of the interaction energy. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.