Abstract
Magnetometer cell wall coat molecules play an important role in preserving the lifetime of pumped alkali metal atoms for use in magnetometers that are capable of measuring very small magnetic fields. The goal of this study is to help rationalize the design of the cell coat molecules. Rubidium-87 is studied in terms of its interaction with three template cell coat molecules: ethane, ethene, and methyltrichlorosilane (MeTS). Ab initio electronic structure methods are applied to investigate the effect that the coat molecules have on the 2S ground state and 2P excited state of 87Rb. We find that, from the ab initio results, the three template molecules have differing effects, with MeTS having the largest effect on the ground state and ethane or ethene having the largest effect on the non-degenerate excited states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.