Abstract
Human behavior, social networks, and civil infrastructure are closely intertwined. Understanding their co-evolution is critical for designing public policies. Human behaviors and day-to-day activities of individuals create dense social interactions that provide a perfect fabric for fast disease propagation. Conversely, people's behavior in response to public policies and their perception of the crisis can dramatically alter normally stable social interactions. Effective planning and response strategies must take these complicated interactions into account. The basic problem can be modeled as a coupled co-evolving graph dynamical system and can also be viewed as partially observable Markov decision process. As a way to overcome the computational hurdles, we describe an High Performance Computing oriented computer simulation to study this class of problems. Our method provides a novel way to study the co-evolution of human behavior and disease dynamics in very large, realistic social networks with over 100 Million nodes and 6 Billion edges.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.