Abstract

A spray model and a droplet collision model are implemented into a radio frequency inductively coupled plasma model. The discrete parcel technique combined with the stochastic Monte Carlo method is used to solve the spray equation and determine the outcomes of droplet collisions in dense sprays. Plasma--spray interactions are considered by adding source terms to the conservation equations of mass, momentum and energy of the plasma phase. Two types of the outcomes of water droplets collisions, coalescence and grazing, are predicted and compared to the experimental and analytical results. The agreement is quite good. The effects of droplet collisions on droplet size distribution of the spray and the spray evaporation are investigated. It is found that the droplet collisions can increase the average droplets size of the spray. For the mono-disperse spray, the collisions can lead to a delay on the spray evaporation. However, for the poly-disperse spray, the effect of droplet collisions on the spray evaporation could not be predicted before the calculation due to the randomness of droplet collisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.