Abstract

A tensor is used to describe head-related transfer functions (HRTFs) depending on frequencies, sound directions, and anthropometric parameters. It keeps the multi-dimensional structure of measured HRTFs. To construct a multi-linear HRTF personalization model, an individual core tensor is extracted from the original HRTFs using high-order singular value decomposition (HOSVD). The individual core tensor in lower-dimensional space acts as the output of the multi-linear model. Some key anthropometric parameters as the inputs of the model are selected by Laplacian scores and correlation analyses between all the measured parameters and the individual core tensor. Then, the multi-linear regression model is constructed by high-order partial least squares (HOPLS), aiming to seek a joint subspace approximation for both the selected parameters and the individual core tensor. The numbers of latent variables and loadings are used to control the complexity of the model and prevent overfitting feasibly. Compared with the partial least squares regression (PLSR) method, objective simulations demonstrate the better performance for predicting individual HRTFs especially for the sound directions ipsilateral to the concerned ear. The subjective listening tests show that the predicted individual HRTFs are approximate to the measured HRTFs for the sound localization.

Highlights

  • The generation of virtual three-dimensional (3D) audio based on head-related transfer functions (HRTFs) becomes important in many applications, such as PC entertainment, hearing aids, multimedia, and virtual reality, with spatial and immersive feelings in 3D auditory space

  • 4 Experimental results In the section, the performance of the proposed method is measured by objective evaluation and subjective sound localization based on a large number of HRTF measurements

  • 27 anthropometric parameters of 45 subjects are measured in the Center for Image Processing and Integrated Computing (CIPIC) database including 17 for the head and the torso from x1 to x17 and 10 for the pinna expressed by d1 − d8, θ1, and θ2 [44]

Read more

Summary

Introduction

The generation of virtual three-dimensional (3D) audio based on head-related transfer functions (HRTFs) becomes important in many applications, such as PC entertainment, hearing aids, multimedia, and virtual reality, with spatial and immersive feelings in 3D auditory space. The key parameters are selected in combination with the individual core tensor by correlation analyses and Laplacian scores.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.