Abstract

Central Algerian Sahara hosts many prolific hydrocarbon accumulations in the Paleozoic successions. In this work a contemporary stress field of the Saharan platform has been evaluated using the dataset from recently drilled wells in El Agreb, El Gassi and Hassi Messaoud fields. A pore fluid pressure gradient of 0.56 PSI/feet is interpreted from the in-situ measurements in the Paleozoic reservoir units. Vertical stress (Sv) modeled from the bulk-density data indicates an average of 1.02 PSI/feet gradient. Rock elastic property-based approach is employed to model the magnitudes of minimum (Shmin) and maximum horizontal stress (SHmax) components, which were calibrated with leak off test/minifrac and breakout widths, respectively. Paleozoic stress profiles reveal Shmin/Sv range of 0.74–0.84, while SHmax/Sv varies between 1.1 and 1.33. Subsurface stress distribution indicates that the present-day stress field in the Saharan platform is principally strike-slip faulting (SHmax > Sv > Shmin). A cumulative 1490 m of B-D quality wellbore breakouts, inferred from the acoustic image logs, suggest a NW-SE/WNW-ESE SHmax orientation, which is parallel to the absolute African plate motion and Africa-Eurasia plate convergence direction, implying ridge push force to be the dominant contributor to the tectonic stress field. Mean SHmax orientation shows slightly anticlockwise rotation (126°N to 144°N) from south (El Agreb) to north (Hassi Messaoud field). Inferences are discussed regarding the fault slip potential and hydrocarbon reservoir development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.