Abstract

Accurate and robust modeling of the characteristic I-V curve of a photovoltaic module is essential in many applications focused on forecasting and predicting photovoltaic (PV) performance. The single diode equivalent model has been used extensively for representing the working principles of solar cells. This work presents a simple methodology for solving the single diode equation from the manufacture’s datasheet parameters, by combining the Lambert-W function and an iterative procedure on the ideality factor of the diode, which has a fast convergence and robustness. The model has been assessed by comparing with experimental I-V curves measured for different modules at indoor and outdoor conditions with good results. Sensitivity analysis has been also done to indicate the possible impact of the uncertainty of the initial parameters that input the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.