Abstract

Seven days of extreme rainfall during September 2013 produced more than 1100 debris flows in the Colorado Front Range, about 78% of which occurred on south-facing slopes (SFS). Previously published soil moisture (volumetric water content) observations suggest that SFS were wetter than north-facing slopes (NFS) during the event, which contrasts with soil moisture patterns observed during normal conditions. Various causes have been hypothesized for the preferential saturation of SFS, but those hypotheses remain largely untested. Here, we analyze the soil moisture patterns using additional soil moisture observations, determine the hydrologic processes controlling the preferential saturation of SFS, and evaluate the importance of soil moisture in predicting the debris flow initiation sites. Soil moisture patterns are simulated using the Equilibrium Moisture from Topography, Vegetation, and Soil (EMT + VS) model. Five hypotheses are tested that may have influenced the soil moisture reversal including higher rainfall rates, lower interception rates, lower saturated water content, thinner soils, and reduced deep drainage on SFS. The EMT + VS model is coupled with an infinite slope stability model to produce factor of safety maps. The hypotheses are tested by comparing the modeled soil moisture to soil moisture observations and the debris flow initiation sites. The results suggest that differences in interception and deep drainage between SFS and NFS were primarily responsible for producing wetter SFS, but the soil moisture pattern likely played a smaller role than vegetation and slope in determining where debris flows initiated. The final model predicts instability at approximately 72% of the observed debris flow initiation sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call