Abstract

In this study, we employ a coupled hydromechanical model to study the hydraulic fracture propagation path in porous media under the influence of existing pressurized voids. The hydraulic fracturing field study reveals that the existing natural voids and cracks alter the local properties of the porous media and influence the fracture propagation pattern. We incorporate these phenomena into the presented hydromechanical model, which is constructed from the mass and momentum balance equations for saturated porous media. The extended finite element method (XFEM) is applied for modeling the fluid flow through discrete cracks. The nonlinear hydromechanical equations are solved by the Newton–Raphson scheme with an implicit time integration procedure. Finally, numerical examples are presented and compared with experimental results. It is found that the fracture propagation path is significantly influenced by the existing pressurized voids and essential properties of the porous media; that is, the crack trends to propagate towards the pressurized voids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.