Abstract

Elevated sewage sludge concentrations of polybrominated diphenyl ethers (PBDEs) are due to their broad utilization in textiles and polymers, their resistance to biological degradation, and also their hydrophobic nature—which drives partitioning into wastewater solids. This study estimated the total U.S. emissions of PBDE due to sewage sludge land application and then determined the human inhalation exposure to sludge-associated PBDEs as a function meteorological conditions and downwind distances from an application site. These aerosol exposures have also been incorporated into pharmacokinetic models to predict contributions to steady-state body burden. Our results suggest that while the amount of PBDEs aerosolized during the land application process is small compared to aerosol emissions associated with product use, the application of sludges onto U.S. soils constitutes a major source of PBDEs entering the outdoor environment. Regarding aerosol exposure to nearby residents, the maximum daily inhalation dosages from a common land application scenario occur immediately after sewage sludges are applied and were 137, 27, 1.9, and 81pg/day for significant congeners PBDE-47, -99, -153 and 209 respectively. These doses are 1–2 orders of magnitude less than the standard daily inhalation exposure to the same PBDEs associated with home indoor air and are similar to doses from inhalation of urban and rural outdoor air. Under the worst-case atmospheric transport scenario, the dosages are reduced by approximately 1 order of magnitude when the setback distance between the sludge aerosolization source and human receptor is increased to 200m. Though the health implications of low-level exposures are not well-understood, these sludge-derived PBDE dosages contribute less than a tenth of 1% to the estimated total body burden of PBDE produced from inhalation of indoor and outdoor air, exposure to house dust, and exposure to PBDE from food and water intake. Overall, the inhalation of PBDE aerosols from sludge-applied fields does not represent a significant contribution to human exposure compared to other common indoor exposures. However, land application is a major environmental source of PBDEs and sludge health impact analyses should focus on the practice's impacts on other exposures, such as biomagnification in aquatic and terrestrial food webs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call