Abstract
Blood vessels that contain endothelial cells (ECs) on the surface are in direct contact with host blood and are the first target of xenograft rejection. Currently, our understanding of human anti-pig vessel immune responses is primarily based on in vitro assays using pig ECs. Therefore, it is necessary to develop an animal model that permits in vivo study of human immunological rejection of pig vessels. Pig artery tissues (PAT) were transplanted into human immune system (HIS) mice or immunodeficient NSG mice (as controls). Intragraft human immune cell infiltration and antibody deposition were quantified using histology and immunohistochemistry. Donor antigen-specific immune responses were quantified using a mixed lymphocyte reaction and a complement-dependent killing assay. Pig CD31+ ECs were detected and increased 2-fold from weeks 3 to 5 in PAT xenografts from immunodeficient NSG mice. However, compared with NSG mice, PAT xenografts in HIS mice had significantly lower numbers of porcine CD31+ ECs and showed a marked reduction from week 3 to week 5. PAT xenograft rejection in HIS mice is associated with intensive infiltration of human immune cells, deposition of human IgM and IgG antibodies, and the formation of a tertiary lymphoid structure. Robust donor pig antigen-specific human T cells and antibody responses were detected in PAT-transplanted HIS mice. We have developed a humanized mouse model to evaluate human anti-pig xenoimmune responses by PAT transplantation in vivo. This model is expected to facilitate the refinement of pig gene-editing strategies (the expression on EC surface) and the testing of local immunosuppressive strategies for clinical pig organ xenotransplantation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.