Abstract

BackgroundEfforts to control the HIV epidemic can benefit from knowledge of the relationships between the characteristics of people who have transmitted HIV and those who became infected by them. Investigation of this relationship is facilitated by the use of HIV genetic linkage analyses, which allows inference about possible transmission events among people with HIV infection. Two persons with HIV (PWH) are considered linked if the genetic distance between their HIV sequences is less than a given threshold, which implies proximity in a transmission network. The tendency of pairs of nodes (in our case PWH) that share (or differ in) certain attributes to be linked is denoted homophily. Below, we describe a novel approach to modeling homophily with application to analyses of HIV viral genetic sequences from clinical series of participants followed in San Diego. Over the 22-year period of follow-up, increases in cluster size results from HIV transmissions to new people from those already in the cluster–either directly or through intermediaries.MethodsOur analytical approach makes use of a logistic model to describe homophily with regard to demographic, clinical, and behavioral characteristics–that is we investigate whether similarities (or differences) between PWH in these characteristics are associated with their sequences being linked. To investigate the performance of our methods, we conducted on a simulation study for which data sets were generated in a way that reproduced the structure of the observed database.ResultsOur results demonstrated strong positive homophily associated with hispanic ethnicity, and strong negative homophily, with birth year difference. The second result implies that the larger the difference between the age of a newly-infected PWH and the average age for an available cluster, the lower the odds of a newly infected person joining that cluster. We did not observe homophily associated with prior diagnosis of sexually transmitted diseases. Our simulation studies demonstrated the validity of our approach for modeling homophily, by showing that the estimates it produced matched the specified values of the statistical network generating model.ConclusionsOur novel methods provide a simple and flexible statistical network-based approach for modeling the growth of viral (or other microbial) genetic clusters from linkage to new infections based on genetic distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.