Abstract

This study presents scenario models for historical variations of climate and slope stability. A model for historical annual patterns of temperature and rainfall was established on the basis of seasonal proxies. A process-based, spatio-temporal model for groundwater variations and slope stability was developed using the GIS environment of the software PCRaster. We applied the slope stability model to study the effects of the different climate scenarios on slope stability for three different hillslopes in the area around Bonn (Germany). The findings indicate three climatic phases with different annual temperature and precipitation patterns over the historic period. The modeling results show that a climatic scenario representing unstable conditions of a transition from the more humid Little Ice Age to dryer recent climate produces the highest slope instabilities. The intensity of this impact, however, varies with the sensitivity of the geomorphic system, i.e. local landforms and lithology, and cannot be generally related to the stability of a specific hillslope. More unstable areas are not necessarily more sensitive to climatic changes: the location of permeable layers (prone to groundwater rise) in relation to sensitive layers (lower strength) and higher gradients (higher stress) influences the sensitivity of a site with respect to climate changes. The presented method is capable of modeling landscape sensitivity to climate change with respect to groundwater-controlled landslides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call