Abstract

In this work, we study diffusion of gases in porous amorphous carbon at high temperatures using equilibrium molecular dynamics simulations. Microporous and mesoporous carbon structures are computationally generated using liquid quench method and reactive force fields. Motivated by the need to understand high temperature diffusivity of light weight gases like H2, O2, H2O, and CO in amorphous carbon, we investigate the diffusion behavior as function of two important parameters: (a) the pore size and (b) the concentration of diffusing gases. The effect of pore size on diffusion is studied by employing multiple realizations of the amorphous carbon structures in microporous and mesoporous regimes, corresponding to densities of 1 g/cm(3) and 0.5 g/cm(3), respectively. A detailed analysis of the effect of gas concentration on diffusion in the context of these two porosity regimes is presented. For the microporous structure, we observe that predominantly, a high diffusivity results when the structure is highly anisotropic and contains wide channels between the pores. On the other hand, when the structure is highly homogeneous, significant molecule-wall scattering leads to a nearly concentration-independent behavior of diffusion (reminiscent of Knudsen diffusion). The mesoporous regime is similar in behavior to the highly diffusive microporous carbon case in that diffusion at high concentration is governed by gas-gas collisions (reminiscent of Fickian diffusion), which transitions to a Knudsen-like diffusion at lower concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call