Abstract

Metallic materials submitted to high strain rates upon dynamic loading can undergo phase changes induced by strains, stresses, and/or temperature increase associated with self-heating. Various mechanical and metallurgical assumptions have been proposed and implemented in numerical codes to deal with such complex interactions. In order to assess their respective influences, a simple nearly analytical model was developed and applied to the classical sphere expansion test carried out on a twophase strain hardening, strain rate and temperature sensitive material. In this paper, classical homogenization assumptions are compared for deriving the overall material flow stress. Strain hardening transfer upon phase transformation is accounted for. Finally, the respective weights of the various contributions to the work rate, associated with stored energy, self-heating, and phase change, are analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.