Abstract
Due to their very high porosity and superior textural properties, metal–organic frameworks (MOFs) are promising nanoporous materials for hydrogen storage by cryocompression. Herein, we investigated hydrogen adsorption on four commercial MOFs, namely, MIL53-Al, MOF-5, HKUST-1, and MOF-177, over a temperature range of 77 to 273 K and pressures up to 14 MPa. The modified Dubinin–Astakhov equation was used to fit the experimental adsorption data, and six parameters (m, nmax, α, β, P0, and Va) were obtained. We concluded that the parameters nmax and Va are related to the micropore volume, while α, β, m, and P0 are related to the average micropore size. Compared to hydrogen compression in an empty tank, the introduction of MOF-5 enhanced the volumetric hydrogen storage at 77 K and 10 MPa from 31 to 42 kg m–3. The released H2 capacities of MOFs from a loading pressure of 10 MPa to a discharge pressure of 0.5 MPa were determined for either isothermal discharge at 77 K or after temperature increase to 160 K. For MOF-5, the amount of usable hydrogen increased up to 10.6 wt % (40.8 mg cm–3) by pressure drop (from 10 to 0.5 MPa) and temperature increase (from 77 to 160 K).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.