Abstract

A large number of index structures for high-dimensional data have been proposed previously. In order to tune and compare such index structures, it is vital to have efficient cost prediction techniques for these structures. Previous techniques either assume uniformity of the data or are not applicable to high-dimensional data. We propose the use of sampling to predict the number of accessed index pages during a query execution. Sampling is independent of the dimensionality and preserves clusters which is important for representing skewed data. We present a general model for estimating the index page layout using sampling and show how to compensate for errors. We then give an implementation of our model under restricted memory assumptions and show that it performs well even under these constraints. Errors are minimal and the overall prediction time is up to two orders of magnitude below the time for building and probing the full index without sampling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.