Abstract

A set of signal points is called a hexagonal constellation if it is possible to define a metric so that each point has exactly six neighbors at distance 1 from it. As sets of signal points, quotient rings of the ring of Eisenstein-Jacobi integers are considered. For each quotient ring, the corresponding graph is defined. In turn, the distance between two points of a quotient ring is defined as the corresponding graph distance. Under certain restrictions, a quotient ring is a hexagonal constellation with respect to this metric. For the considered hexagonal constellations, some classes of perfect codes are known. Using graphs leads to a new way of constructing these codes based on solving a standard graph-theoretic problem of finding a perfect dominating set. Also, a relation between the proposed metric and the well-known Lee metric is considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.