Abstract

An inappropriate handling of cross-sectional heterogeneity renders estimates of causal effects inaccurate and uninformative. The present paper discusses how the direct modeling of cross-sectional differences via semiparametric models represents a useful bridge between a statistical approach, where the conditional distribution of the dependent variable returns any value of the outcome given any value of the explanatory variables, and an econometric analysis, where functions and parameters have direct policy implications. The explicit modeling of heterogeneity across different groups improves the quality of the estimates, mitigates their dependence upon the chosen instrumental variable, diminishes the self-selection problem, and fosters the acquisition of useful information for the entire sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.