Abstract

Count data are very common in health services research, and very commonly the basic Poisson regression model has to be extended in several ways to accommodate several sources of heterogeneity: (i) an excess number of zeros relative to a Poisson distribution, (ii) hierarchical structures, and correlated data, (iii) remaining "unexplained" sources of overdispersion. In this paper, we propose hierarchical zero-inflated and overdispersed models with independent, correlated, and shared random effects for both components of the mixture model. We show that all different extensions of the Poisson model can be based on the concept of mixture models, and that they can be combined to account for all different sources of heterogeneity. Expressions for the first two moments are derived and discussed. The models are applied to data on maternal deaths and related risk factors within health facilities in Mozambique. The final model shows that the maternal mortality rate mainly depends on the geographical location of the health facility, the percentage of women admitted with HIV and the percentage of referrals from the health facility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.