Abstract

This paper presents a numerical study on heat generation in a lithium-ion (LiC6/LiPF6/LiyMn2O4) battery cell. The numerical model considered multi-physics including battery kinetics, diffusion, and thermal analysis. The heat generation rate was determined by a local heat generation model. This model enables the investigation of the effects of battery parameters on different heat generation mechanisms and the overall heat generation rate in the battery. The effects of the thickness of the battery components and the size of the electrode particles at different discharge rates were evaluated. The results revealed the relationships between these parameters. A battery with a low heat generation rate and efficient battery utilization may be achieved through parameter optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.