Abstract

Abstract Accurately modeling the interactions between inland water bodies and the atmosphere in meteorological and climate models is crucial, given the marked differences with surrounding landmasses. Modeling surface heat fluxes remains a challenge because direct observations available for validation are rare, especially at high latitudes. This study presents a detailed evaluation of the Canadian Small Lake Model (CSLM), a one-dimensional mixed-layer dynamic lake model, in reproducing the surface energy budget and the thermal stratification of a subarctic reservoir in eastern Canada. The analysis is supported by multiyear direct observations of turbulent heat fluxes collected on and around the 85-km2 Romaine-2 hydropower reservoir (50.7°N, 63.2°W) by two flux towers: one operating year-round on the shore and one on a raft during ice-free conditions. The CSLM, which simulates the thermal regime of the water body including ice formation and snow physics, is run in offline mode and forced by local weather observations from 25 June 2018 to 8 June 2021. Comparisons between observations and simulations confirm that CSLM can reasonably reproduce the turbulent heat fluxes and the temperature behavior of the reservoir, despite the one-dimensional nature of the model that cannot account for energy inputs and outputs associated with reservoir operations. The best performance is achieved during the first few months after the ice break-up (mean error = −0.3 and −2.7 W m−2 for latent and sensible heat fluxes, respectively). The model overreacts to strong wind events, leading to subsequent poor estimates of water temperature and eventually to an early freeze-up. The model overestimated the measured annual evaporation corrected for the lack of energy balance closure by 5% and 16% in 2019 and 2020. Significance Statement Freshwater bodies impact the regional climate through energy and water exchanges with the atmosphere. It is challenging to model surface energy fluxes over a northern lake due to the succession of stratification and mixing periods over a year. This study focuses on the interactions between the atmosphere of an irregular shaped northern hydropower reservoir. Direct measurements of turbulent fluxes using an eddy covariance system allowed the model assessment. Turbulent fluxes were successfully predicted during the open water period. Comparison between observed and modeled time series showed a good agreement; however, the model overreacted to high wind episodes. Biases mostly occur during freeze-up and breakup, stressing the importance of a good representation of the ice cover processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call