Abstract

Recent advances in controlled synthesis and characterization of single-layer graphene nanostructures with defects provide the basis for gaining an understanding of the complex nanomaterials by theoretical investigation. In this work, we modeled defective single-layer graphene (DSLG), where nanostructures with divacancy, trivacancy, tetravacancy, pentavacancy, hexavacancy, and heptavacancy defects, having pore sizes from 0.1 to 0.5 nm, were considered. Nanostructures with molecular oxygen adsorption to mimic experimental conditions were also investigated. On the basis of calculated formation energies of the optimized nanostructures, a few DSLGs were selected for theoretical characterization of the defect-induced I(D)/I(D′) Raman intensity ratios. We found that the I(D)/I(D′) ratio decreases with an increase in the nanohole size and in the number of adsorbed oxygens, which explains an experimental observation of a decrease in this characterization signature with an increase in exposure time to oxygen plasma...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call