Abstract

A multiscale model is presented for predicting the magnitude and rate of powder blending in a rotating drum blender. The model combines particle diffusion coefficient correlations from the literature with advective flow field information from blender finite element method simulations. The multiscale model predictions for overall mixing and local concentration variance closely match results from discrete element method (DEM) simulations for a rotating drum, but take only hours to compute as opposed to taking days of computation time for the DEM simulations. Parametric studies were performed using the multiscale model to investigate the influence of various parameters on mixing behavior. The multiscale model is expected to be more amenable to predicting mixing in complex geometries and scale more efficiently to industrial‐scale blenders than DEM simulations or analytical solutions. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3277–3292, 2018

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call