Abstract

The combination of glacier outlines with digital elevation models (DEMs) opens new dimensions for research on climate change impacts over entire mountain chains. Of particular interest is the modeling of glacier thickness distribution, where several new approaches were proposed recently. The tool applied herein, GlabTop (Glacier bed Topography) is a fast and robust approach to model thickness distribution and bed topography for large glacier samples using a Geographic Information System (GIS). The method is based on an empirical relation between average basal shear stress and elevation range of individual glaciers, calibrated with geometric information from paleoglaciers, and validated with radio echo soundings on contemporary glaciers. It represents an alternative and independent test possibility for approaches based on mass‐conservation and flow. As an example for using GlabTop in entire mountain ranges, we here present the modeled ice thickness distribution and bed topography for all Swiss glaciers along with a geomorphometric analysis of glacier characteristics and the overdeepenings found in the modeled glacier bed. These overdeepenings can be seen as potential sites for future lake formation and are thus highly relevant in connection with hydropower production and natural hazards. The thickest ice of the largest glaciers rests on weakly inclined bedrock at comparably low elevations, resulting in a limited potential for a terminus retreat to higher elevations. The calculated total glacier volume for all Swiss glaciers is 75 ± 22 km3 for 1973 and 65 ± 20 km3 in 1999. Considering an uncertainty range of ±30%, these results are in good agreement with estimates from other approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call