Abstract
Mantle convection causes the most important contribution to the geoid and dynamic topography. With high resolution tomography models and numerical simulation methods solving the governing equations of mantle convection, the model geoid can fit well compared to observation. However, if wave speed variations are converted to density variations assuming both are due to temperature variation in the entire mantle, there is still a large discrepancy between the present dynamic topography predicted by mantle flow and that induced from observations: Especially large negative topography is predicted in cratons, contrary to observations. In order to improve the fit of model dynamic topography compared to observations, chemical density anomaly in earth’s lithosphere need to be included. In this study, we will combine these with lateral viscosity structure and study the effect on model dynamic topography and geoid, and investigate which density models would yield a good fit. In the sublithospheric mantle, under the assumption that the density anomalies are thermally induced from temperature variation in the mantle, we use temperature-dependent viscosity. We also include thermo-chemical density anomalies in the Large low-shear-velocity provinces (LLSVPs) in the lowermost mantle to compute their effect on the model geoid and dynamic topography. Our overall objective is a better constraint on the Earth’s interior structure, by achieving good fits of both dynamic topography and geoid to their observations, to provide as a good reference for the Earth’s study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.