Abstract

In this study we investigate the mechanisms underlying gender differences in the generation of arrhythmias in the long QT and Brugada syndromes. Simulations were conducted at the single myocyte level using a detailed mathematical model of human ventricular myocytes. Given the scarce human data on the gender-related differences in single cardiac cells, we assumed gender-related differences in five ionic-current systems: fast sodium current (INa), slowly inactivating late sodium current (INal), transient outward potassium current (Ito), slow delayed rectifier potassium current (IKs), and calcium current through the L-type channel (ICa(L)), based on experimental results obtained in canine myocytes. Our modeling results suggest that in left ventricular myocytes, enhanced INal under conditions of reduced repolarization reserve results in sex-dependent development of early afterdepolarizations (EADs) in the post-pause action potentials (APs). Moreover, this modeling study demonstrates increased propensity for the development of the loss of the AP dome in male epicardial myocytes of the right ventricle compared with other types of myocytes from the left and right ventricles. Finally, we also found a slight effect of INal on gender-dependent loss of AP dome in epicardial right ventricular myocytes. In conclusion, at the cellular level, gender differences in the development of EADs and the propensity to develop the loss of the AP dome can be attributed to male/female related differences in INa, INal, Ito, IKs, and ICa(L).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call