Abstract

The conformations and dynamics of gangliosides GM1, GM2, 6'-GM2 and GM4 have been studied by computational means, and the results compared to NMR data. Unconstrained conformational searches were run using the AMBER* force field augmented by MNDO derived parameters for the Neu5Ac anomeric torsion, the GB/SA water solvation model, and the MC/EM alogorithm; extended (10-12 ns) dynamic simulations in GB/SA water were performed with the MC/SD protocol, and the stored structures were minimized. The overall mobility of the Neu5Ac alpha2,3Gal linkage and the position of its minimum energy conformation have been shown to depend mainly on the presence or the absence of a GalNAc residue at the adjacent position. The best quantitative agreement with the available NOE data was achieved after minimization of the structures stored during the MC/SD dynamic runs. The latter protocol appears to reproduce satisfactorily the available experimental data, and can be used with confidence to build three-dimensional models of ganglioside headgroups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.