Abstract

Gas–liquid–liquid–solid (GLLS) reaction systems are often encountered in manufacturing of fine and specialty chemicals. More often than not, such reaction systems involve multiple reactions, and selectivity toward the desired component always poses challenges. An adequate understanding of various parameters affecting GLLS reactor performance is essential to develop strategies for realizing desired selectivity. In this work, a comprehensive reaction engineering model for simulating four phase hydrogenation reactions has been developed. A generalized mixing cell based framework for a reaction system with four interacting phases (gas [G], aqueous [L], organic [L], and solid catalyst [S]) was developed. The model is written in a general way so as to specify one of the liquid phases as a continuous phase, and the other three phases are dispersed into it. In each cell, vapor space is included. The model includes the possibility of evaporation of solvent and internal condensation (in vapor space). The model can ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.