Abstract

This study uses a spatially-explicit land-use/land-cover (LULC) modeling approach to model and map the future (2016–2030) LULC of the area surrounding the Laguna de Bay of Philippines under three different scenarios: ‘business-as-usual’, ‘compact development’, and ‘high sprawl’ scenarios. The Laguna de Bay is the largest lake in the Philippines and an important natural resource for the population in/around Metro Manila. The LULC around the lake is rapidly changing due to urban sprawl, so local and national government agencies situated in the area need an understanding of the future (likely) LULC changes and their associated hydrological impacts. The spatial modeling approach involved three main steps: (1) mapping the locations of past LULC changes; (2) identifying the drivers of these past changes; and (3) identifying where and when future LULC changes are likely to occur. Utilizing various publically-available spatial datasets representing potential drivers of LULC changes, a LULC change model was calibrated using the Multilayer Perceptron (MLP) neural network algorithm. After calibrating the model, future LULC changes were modeled and mapped up to the year 2030. Our modeling results showed that the ‘built-up’ LULC class is likely to experience the greatest increase in land area due to losses in ‘crop/grass’ (and to a lesser degree ‘tree’) LULC, and this is attributed to continued urban sprawl.

Highlights

  • Urban sprawl is occurring at an accelerated pace in many developing countries worldwide due to rapid global economic and population growth coupled with globalization

  • A major concern related to this urban sprawl is land-use (LU)/land-cover (LC) change, which can dramatically alter the landscape in areas with high rates of urban expansion [2]

  • Our main objective in this study is to model the future LULC changes in the river basins that drain into the Laguna de Bay up to year 2030

Read more

Summary

Introduction

Urban sprawl is occurring at an accelerated pace in many developing countries worldwide due to rapid global economic and population growth coupled with globalization. Of the world’s population lives in urban areas, and the United Nations has predicted that by 2050, 66% of the world’s population will live in urban areas [1] This rapid increase in urban population has forced nations to meet the changing demands for necessities such as food, energy, land, and water. A major concern related to this urban sprawl is land-use (LU)/land-cover (LC) change, which can dramatically alter the landscape in areas with high rates of urban expansion [2]. These LULC changes are often based on the plans of local governments to increase economic development and to support their growing populations.

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call