Abstract

Consistent drought modelling under plausible shared socioeconomic–representative concentration pathways (SSP–RCPs) are crucial for effectively managing future drought risk in agricultural environments. The Western Cape (WC) is one of South Africa’s main agro-based provinces and faces a mounting threat of water insecurity due to recurrent drought. The objective of this study was to predict meteorological drought hazard for 2021–2050 based on three CMIP6 scenarios: SSP5–8.5, SSP2–4.5 and SSP1–2.6. Precipitation simulations generated by the sixth version of Model for Interdisciplinary Research on Climate (MIROC6) under the SSP5–8.5, SSP2–4.5 and SSP1–2.6 scenarios were used from fifteen stations across the six AEZs of the WC province. The Standardised Precipitation Index (SPI) was computed at 12-month timescales. Trend analysis of precipitation datasets and the SPI-values were done at p < 0.05 using the Mann–Kendall (M–K) test. The findings revealed negative precipitation trends of − 7.6 mm/year in Ceres, while positive trends of 0.3 mm/year were observed in Malmesbury. These findings indicate an improvement from − 7.8 and − 6.4 mm/year in the same regions, respectively, compared to historical trends observed between 1980 and 2020. The results suggest that in 2042 and 2044, Bredasdorp will experience − 2 < SPI < − 1.5 under the SSP2–4.5 scenarios, while Matroosberg in 2038 under the SSP5–8.5 will experience SPI > − 2. The findings of this study will assist in the development of proactive planning and implementation of drought mitigation strategies and policies aimed at reducing water insecurity in AEZs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call