Abstract

Modeling source–sink interactions and carbohydrate partitioning in plants requires a detailed model of plant architectural development, in which growth and function of each organ is modeled individually and carbohydrate transport among organs is modeled dynamically. L-PEACH is an L-system-based graphical simulation model that combines supply/demand concepts of carbon partitioning with an L-system model of tree architecture to create a distributed supply/demand system of carbon allocation within a growing tree. The whole plant is modeled as a branching network of sources and sinks, connected by conductive elements. An analogy to an electric network is used to calculate the flow and partitioning of carbohydrates between the individual components. The model can simulate multiple years of tree growth and be used to demonstrate effects of irrigation, crop load, and pruning on architectural development, tree growth, and carbon partitioning. Qualitative model outputs are viewed graphically as the tree “grows” on the computer screen while quantitative output data can be evaluated individually for each organ or collectively for an organ type using the MatLab software.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call