Abstract

This paper presents a modified incompressible smoothed particle hydrodynamics (MISPH) method for fluid-porous media interaction problems. Navier–Stokes and Brinkman Equations are considered for modeling the fluid flow outside and inside porous media. The MISPH method utilizes a truly incompressible divergence free velocity formulation. The equations are solved by using a robust two-step semi-implicit exact projection method. Turbulence stresses are evaluated by using an semi-analytical Smagorinsky model. The representative volume of the particles changes with the porosity. Interface conditions are imposed implicitly by using Darcy velocity and modified Pressure Poisson Equation (PPE) with porosity in the source/sink term. Impermeable boundary conditions are simulated with fixed ghost particles. The model is validated by using existing experimental results of dambreak flow through a homogeneous porous block in a wet bed. Simulation results show good agreement with experimental data. An application to heterogeneous porous media demonstrates the applicability and adaptability of the proposed framework. The numerical model is capable of efficiently capturing the interaction of fluid in porous and nonporous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.