Abstract

In this work, we address the life cycle economic and environmental optimization of a supply chain network considering both design and operational decisions under uncertainty. A modeling framework is proposed that integrates the functional-unit-based life cycle optimization methodology and the two-stage stochastic programming approach for sustainable supply chain optimization under uncertainty. We develop a stochastic mixed-integer linear fractional programming (SMILFP) model to tackle multiple uncertainties regarding feedstock supply and product demand. To address the computational challenge of solving the resulting large-scale SMILFP problems, an efficient solution algorithm is developed that takes advantage of the efficiency of parametric algorithm and the decomposition-based multi-cut L-shaped method. We present a case study based on a spatially explicit model for the optimal design and operations of a county-level hydrocarbon biofuel supply chain in Illinois to demonstrate the applicability of the proposed modeling framework and the efficiency of the solution algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.