Abstract

In this study, the long memory behaviour of monthly maximum temperature of India for the period 1901 to 2007 is investigated. The correlogram of the series reveals a slow hyperbolic decay, a typical shape for time series having the long memory property. Wavelet transformation is applied to decompose the temperature series into time–frequency domain in order to study the local as well as global variation over different scale and time epochs. Significant increasing trend is found in the maximum temperature series in India. The rate of increase in maximum temperature accelerated after 1960s as compared to the earlier period. Here, an attempt is also made to detect the structural break for seasonally adjusted monthly maximum temperature series. It is found that there is a significant break in maximum temperature during July, 1963. Two-stage forecasting (TSF) approach to deal with the coexistence of long memory and structural change in temperature pattern is discussed thoroughly. The forecast performance of the fitted model is assessed on the basis of relative mean absolute prediction error (RMAPE), sum of squared errors (SSE) and mean squared errors (MSE) for different forecast horizons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.